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The shape of a moving inviscid axisymmetric drop is considered as a function of 
surface tension and of the intensity of the internal circulation. In a frame of 
reference moving with the drop, the drop is modelled as a region of diffused vorticity 
which is bounded by a vortex sheet, and is imbedded in streaming flow. First, an 
asymptotic analysis is performed for a slightly non-spherical drop whose circulation 
is very close to that required for the spherical shape. The results indicate that steady 
drop shapes may exist at  all but a number of distinct values of the Weber number, 
the lowest two of which are 4.41 and 6.15. For highly deformed drops, the problem 
is formulated as an integral equation for the shape of the drop, and for the strength 
of the bounding vortex sheet. A numerical procedure is developed for solving this 
equation, and numerical calculations are performed for Weber numbers between 0 
and 4.41. Limiting members in the computed family of solutions contain spherical 
drops, and inviscid bubbles with vanishing circulation. Computed new shapes 
include saucer-like shapes with a rounded main body and an elongated tip. The 
relationship between inviscid drops and drops moving at large Reynolds numbers is 
discussed. 

1. Introduction 
The mechanics of moving bubbles and drops has received considerable attention 

because of its importance in a variety of applications, but also, because of its 
significance as a fundamental problem in fluid mechanics (Harper 1972 ; Clift, Grace 
& Weber 1978; Harper 1982). One of the better studied aspects of the problem is 
concerned with the shape of bubbles and drops that move, under the action of 
gravity, in an infinite ambient fluid. As a bubble or drop starts moving, vorticity is 
generated along its surface, and subsequently diffuses both outward and inward into 
the bubble or drop. The inward diffusing vorticity causes the gradual onset of 
internal circulation. In the case of bubbles, the viscosity of the internal fluid is much 
smaller than that of the suspending fluid, so that the internal circulation has little 
effect on the shape of the bubble and the dynamics of the external flow. In the case 
of drops, however, the internal circulation is of appreciable dynamical significance, 
and its presence may not be overlooked. For drops, the external flow is coupled with 
the internal flow via the boundary conditions on the drop surface, producing an 
involved free-boundary problem. This coupling considerably complicates the 
implementation of theoretical and computational methods of analysis including 
boundary-layer theory, integral, finite difference, and finite element formulations. 
With the exception of a recent study by Dandy & Leal (1989), all previous numerical 
investigations of drops relied on the assumption of spherical shape, requiring strong 
surface tension (see Oliver & Chung 1987 and references therein). From an 
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experimental standpoint, there are serious difficulties in measuring or even 
visualizing the internal drop motion without disturbing the drop shape or altering 
the physical properties of the fluids. It is thus not surprising that bubbles have been 
studied much more extensively, and are much better understood than drops. 

In this paper we are concerned with the shape of inviscid drops with internal 
circulation moving in an unbounded ambient fluid. The primary objective of our 
analysis is to describe a family of shapes which constitutes a plausible asymptotic 
limit of drops moving a t  very high Reynolds numbers. A second objective is to 
demonstrate explicitly the existence of and to examine the structure of families of 
axisymmetric regions of concentrated vorticity, viewed as a special class of Batchelor 
flows (Moore, Saffman & Tanvesr 1988). Before discussing these objectives further, 
i t  is necessary to outline the main features of our model. 

Following Batchelor (1956), we argue that at high Reynolds numbers, the flow in 
the exterior of a moving drop is essentially irrotational, whereas the flow in the 
interior of the drop is rotational with diffused vorticity. There is a viscous boundary 
layer along the drop surface and along the axis of motion, inside and behind the drop. 
The surface boundary layer is similar to that developing along a solid body rather 
than to that developing around a gas bubble or a spherical drop, in the sense that it 
is responsible for a finite fraction of the total viscous dissipation. In our inviscid flow 
model, we assume that the external flow is perfectly irrotational, whereas the 
internal flow is rotational with perfectly diffused vorticity. To simulate the surface 
boundary layer, we assume that the tangential component of the velocity undergoes 
a discontinuity across the drop surface. This amounts to a vortex sheet. The pressure 
also undergoes a discontinuity across the drop surface which is balanced by surface 
tension. Neglecting viscous effects renders the shape of the drop a function of two 
parameters, namely the surface tension, expressed by the Weber number W ,  and of 
the intensity of the internal circulation. 

Addressing now the physical relevance of our inviscid model, we note that both the 
Weber number and the intensity of the internal circulation are free parameters that 
may be assigned arbitrary values. In  reality, both of these parameters are functions 
of the drop size and shape, as well as of the viscosity and density of the drop and of 
the suspending fluid. We have already indicated that when the viscosity of the drop 
is very small, the internal circulation may be neglected, leaving W as a single 
parameter of the flow. Furthermore, in this case, W may be related to the drag 
coefficient which in turn, may be related to the bubble size and shape, and to the 
physical properties of the drop and ambient fluid. This may be done by equating the 
rate of working of the drag force acting on the bubble to the rate of viscous 
dissipation within the external irrotational flow. Unfortunately, a similar calculation 
is not possible in the case of drops, for the dissipation in the boundary layer 
surrounding a drop is of the same order as that within the external and internal flow. 
A boundary-layer analysis or numerical calculations a t  large Reynolds numbers are 
necessary to produce this information. 

In our inviscid flow model we neglect the presence of wakes that may develop 
behind moving drops. Previous studies have shown that these wakes may take the 
form of standing toroidal vortices, or of trains of unsteadily shed eddies (Rivkind & 
Ryskin 1976; Clift et al. 1978, p. 184; Dandy & Leal 1989). There is evidence, 
however, that while these wakes affect the shape of the rear part of the drop, they 
have small influence on the shape of the front part of the drop (Ryskin & Leal 1984). 
Furthermore, it is not clear that these wakes persist a t  very high Reynolds numbers 
(Dandy & Leal 1986, 1989). In  our inviscid model, we also neglect the presence of 
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FIGURE 1. Schematic illustration of an axisymmetric drop placed in a uniform stream U. 

gravitational forces in the dynamic balance along the drop surface. Strictly speaking, 
this approximation is valid when the drag coefficient cd is small (Miksis, 
Vanden-Broeck & Keller 1982 ; El Sawi 1974). Previous numerical work, however, 
indicates that this may be a reasonable approximation even when cd is of order one 
(Ryskin & Leal 1984; Dandy & Leal 1989). Neglecting gravitational forces is 
particularly convenient for our purposes, for it allows us to focus on the effect of the 
drop circulation, and to consider drop shapes with fore-and-aft symmetry. 

To set up the grounds for our analysis, it is helpful to summarize previous results 
for spherical drops. In  the context of inviscid flow theory, the flow outside an inviscid 
spherical drop is potential flow past a sphere, whereas the flow inside the drop is 
identical to that inside Hill’s spherical vortex. The strength of the vorticity inside the 
drop may be arbitrary, and must be specified by physical considerations. A number 

w 1 5 U  of authors have chosen 
(1 .1)  u 2 a3’ 

(Harper 1972) where U is the speed of the drop, a is the radius of the drop, w is the 
azimuthal component of the vorticity, and u is the distance from the axis of motion 
(figure 1). The choice (1 .1)  renders the velocity continuous across the surface of the 
drop, and hence, it prevents excessive viscous stresses associated with vortex sheets. 
Boundary-layer analysis shows that viscosity modifies the primary inviscid flow by 
introducing thin viscous layers along the surface of the drop and along the axis of 
motion, inside the behind the drop. These layers cause a reduction in the internal 
drop circulation by a factor that is proportional to the inverse square root of the 
Reynolds number Re-; (Harper & Moore 1968). Note that although (1 .1)  preserves 
the continuity of the velocity field, for a 4 1, it introduces discontinuities in the 
pressure across the drop surface. This causes drop deformation, and necessitates the 
action of surface tension to restore the spherical shape. 

The rest of our paper is structured as follows. In  $2 we present an asymptotic 
analysis valid for slightly non-spherical drops whose circulation is very close to that 
required for the spherical shape. The solution procedure employs the classical 
method of separation of variables. In $ 3  we formulate the problem as an integral 
equation, and develop a numerical method of solution. We then present numerical 

- = -_ 
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results for highly deformed drops a t  low and moderate Weber numbers (high surface 
tension). In $4 we summarize and discuss the physical relevance of our results. 

2. Asymptotic analysis for nearly spherical drops 
We consider the steady motion of an inviscid, nearly spherical, axisymmetric drop. 

It is convenient to refer to a frame of reference moving with the drop, in which the 
drop is a stationary entity imbedded in a uniform stream with velocity U (figure 1). 
We refer to spherical polar coordinates (r,  8,$) with corresponding velocity 
components (u, v, w), and introduce the Stokes streamfunction $ defined by the 
equations 

(2.la) 

(2.1 b)  

In  terms of the stream function, the azimuthal component of the vorticity is equal 
to 

At the outset, we non-dimensionalize all variables using as characteristic velocity the 
free-stream velocity U,  and as characteristic length the equivalent drop radius a = 
(3V/47c)t, where V is the drop volume. Assuming that the velocity field deviates only 
slightly from its basic state, corresponding to the spherical shape, we introduce 
asymptotic expansions for the streamfunction for both the interior and exterior flow 

$ = $ o ( 1 + B ) + a l j ; - l + 0 ( € 2 ) ,  (2.3a) 

$ = $0 + €$l+ W2), (2.3b) 

where e is a small number compared to unity. A circumflex indicates variables in the 
interior of the drop. The streamfunction of the basic state is equal to 

si0 = +I(I - r2) r2 sin2 e, (2.4a) 

(2.4b) 

where A is a constant. The corresponding azimuthal vorticity is 

ho = hrsine = ha, (2.5a) 

wo = 0. (2.5b) 

Equation (2.4 a) expresses flow inside Hill’s spherical vortex, whereas (2.4 b)  expresses 
irrotational flow past a sphere. Examining next Bernoulli’s equation along the drop 

15 1 h = h  - _ _ _  
2 at’ 

surface, we find that the choice 

0 -  

renders the pressure continuous across the drop surface. Here, a is the ratio of the 
densities between the drop and the suspending fluid, a = ; /p .  For a + 1, however, 
(2.6) introduces discontinuities in the tangential velocity across the drop surface. On 
the other hand, the choice 

h = h  --Is (2.7) 1 -  2 ,  
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preserves the continuity of the velocity field, but introduce discontinuities in the 
pressure across the drop surface. It is clear that (2.6) is the proper choice in the 
context of inviscid flow theory, and thus, it is adopted in our further analysis. Note 
however, that when a is very small, (2.6) yields an excessive internal circulation 
which appears to be unrealistic and in contrast to observations. This renders our 
perturbation analysis physically acceptable only in a restricted range of a < 1. 

The flow fields expressed by $t and $*, i = 1,2, . . . are assumed to be irrotational, 
and thus, the vorticity field corresponding to (2.3a, b) is given exactly by 

4 = A,(l+s)rsinO, ( 2 . 8 ~ )  

w = 0. (2.8b) 

The parameter E is now identified with the proportional deviation of the drop 
circulation from that required for a spherical shape. 

Assuming next that the boundary of the drop exhibits slight deviations from the 
spherical shape that are commensurate with E ,  we write 

(2.9) 

Our task will be to compute the perturbation stream functions, and the shape 
function h, subject to two boundary conditions along the drop surface: (i) the 
velocity component normal to the boundary of the drop on both sides must vanish, 
and (ii) the jump in the pressure across the drop surface must be balanced by surface 
tension. The first condition may be expressed as 

r = R = 1 + eh(0) + 0 ( e 2 ) .  

&r = R) = $(r = R) = 0, (2.10) 

while the second condition may be expressed as 

4k 
W 

aii*ii-u.u+- = c, (2.11) 

evaluated at  r = R. The Weber number, W ,  is defined as W = 2apU2/T, T is the 
surface tension, k is the total curvature of the drop, and c is a constant which is 
related to the curvature of the drop at front or rear stagnation point k, by c = 
4k,,/W. The shape of the drop is determined, possibly in a non-unique manner, by 
any three of the four parameters A, a,  c, and W ,  as well as by the perturbation 
variable 8. 

Substituting the expansions (2.3a, b) and (2.9) into the kinematic condition (2.10), 
and collecting terms of order E we find 

(2.12) 

Furthermore, recalling that the perturbation flow is irrotational, we write 

D2$, = D2$, = 0, (2.13) 

where the operator D2 was defined in (2.2). In spherical polar coordinates, the general 
non-singular solution to these equations is 

00 

$1 = sin20 2 A ,  rn+lP,(cos o),  

$1 = sin20 C B -P,(cos~), 
n-l nrn  

n-1 

- 1  

(2.14) 

(2.15) 
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(Moffatt & Moore 1978). The even-order coefficients in both of these series must 
vanish due to the assumed fore-and-aft symmetry of the flow. Substituting (2.14) and 
(2.15) into (2.12), we find that the odd-order coefficients are related through 

B, = &A4,. (2.16) 

Furthermore, (2.12) suggests the following expansion for the drop shape 

2 "  
h = -- C B,Ph(cos6). 

3 n-1 

(2.17) 

It will be convenient to expand h in an alternative series involving Legendre 

h =  ~,P,(cos~) ,  (2.18) 

where the odd-order coefficients vanish owing to symmetry. To relate the coefficients 
in (2.17) and (2.18), we use the identity 

polynomials m 

n-1 

(2n+ 1)P, = Pn-l-Pn+l, (2.19) 

and find 

To order 8,  the mean curvature of the drop is given by 

m 

k = 2 + ~  C (n+2)(n-l)hnPn,  
n=l 

(2.20) 

(2.21) 

(Lamb 1932, p. 475). We are now in a position to complete the solution to the first- 
order problem. We substitute the expansions (2.14), (2.15), (2.17) and (2.21) into the 
dynamic condition (2.11), and use the identity 

(2.22) 

to replace the derivatives of Legendre polynomials with Legendre polynomials. We 
then collect coefficients multiplying Legendre polynomials of the same order, and 
finally, we use (2.20) to derive an infinite system of linear algebraic equations for the 
coefficients h, 

9(n-4) (n-2) (n- 1 )  
hn-3 (2n-3) (2n-5) 

1 n-4)(n-2) (n- l )  9(n+l)n(n-2)  4 
--(n-2) ( n + l )  

(2n-3)(2n-l) +(2n+1)(2n- l )  W - hn-* [ '( 
9n(n+ 1) (n-2) 

= 3Sn3, (2.23) 
+hn+l (2n+1) (2n+3) 

n = 3,5,  . . . . This system is completed by specifying that the volume of the drop is 
equal to $n, yielding h, = 0. It is worth noting that with the above non- 
dimensionalization, the coefficients of (2.23), are independent of the density ratio a. 

The asymptotic solution of (2.23) in the limit of vanishing Weber numbers (large 
surface tension) may be readily found to be 

h, = &Wan2. (2.24) 
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FIGURE 2. The deformation function h(8) at several values of the Weber number. Note the 

singular behaviour at W = 4.41 and W = 6.15. 

This shows that when surface tension is dominant, the drop takes the shape of an 
oblate spheroid, with the large axis normal to the direction of the flow. It is 
interesting to momentarily violate the assumption of small E ,  and to set E = - 1. In 
this manner, we recover an inviscid bubble with vanishing internal circulation whose 
boundary is described by the equation 

r = 1-&WP2. (2.25) 

Comparison with the result of Moore (1959) 

r = l-&WP,, (2.26) 

pertaining to slightly distorted bubbles, indicates that our asymptotic analysis 
overestimates by a factor of two the drop deformation. This is due to the fact that 
in our perturbation expansion, the disturbance flows inside and outside the drop are 
assumed to be of the same order, while in the analysis of Moore (1959), the internal 
flow is by assumption equal to zero. 

To compute the shape of the drop in the general case of finite W ,  we solve the 
infinite system (2.23) by truncation. In practice, we find that in the range of W 
considered, less than twenty terms are sufficient to produce results accurate to the 
third decimal place. Not surprisingly, we find that as W is increased, the boundary 
of the drop develops increasingly finer oscillations. In figure 2 (a,  b)  we plot the shape 
function h(8) for several values of W. Examining figure 2 (a)  we observe that for small 
values of W ( W  = 1,2,3), h(8) is nearly a sinusoidal function, implying that the drop 
takes the shape of an oblate spheroid. At W = 4, we observe that the deformation of 
the drop becomes pronounced along the midplane 8 = in, and then, at W = 4.41, we 
obtain a singular behaviour. At this value of W, the determinant of the system (2.23) 
changes sign independently of the level of truncation. As W = 4.41 is approached 
from lower or higher values, the drop develops a spike-like projection or depression at  
the midplane 6 = in. In figure 2 (b )  we plot h(8) for values of W higher than 4.41. We 
observe oscillatory but regular behaviour until W = 6.15, where we encounter a 
second singular point. Further calculations showed the existence of a series of 
singular points at higher values of W. Thus, our asymptotic analysis indicates the 
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FIGURE 3. The strength of the modified surface vortex sheet yl(0) at several values of the 
Weber number. Note the singular behaviour at W = 4.41 and W = 6.15. 

existence of steady drop shapes at  all but a number of distinct values of the Weber 
number. 

To gain some insights into structure of the flow, we consider the strength of the 
vortex sheet residing along the drop surface. It is particularly instructive to subtract 
out the strength of the sheet corresponding to the undisturbed spherical shape, and 
to consider the strength of a modified vortex sheet, given by 

Y = v--w I" = --6 y1+0(-62), (2.27a) 

m 

y1 = :+2 2 (n-2)BnP:,, (2.27 b )  

(see also next section). Note that y1 is independent of the density ratio a. In figure 
3(a, b) we plot y1 as a function of the polar angle B for different values of W. We 
observe that the behaviour of y1 conforms with that of the shape function h, 
exhibiting a spike-like behaviour a t  the singular points W = 4.41 and W = 6.15. 

The system (2.23) describes the shape of slightly non-spherical drops whose 
deformation is proportional to the deviation of the internal circulation from its 
unperturbed value. If we had stipulated that the circulation of the drop is 
undiminished, and yet, that the drop is slightly deformed, we would have found that 
the shape of the drop is described by the homogeneous system of (2.23). A non-trivial 
solution to this system is possible only at  the singular points W = 4.41,6.15, . . . . This 
suggests that these points represent crossing points between distinct solution 
branches, a conjecture that will be validated in the next section. This behaviour is 
reminiscent of that of steady gravity-capillary waves on deep water (Chen & 
Saffman 1979, 1980). 

n-1 
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3. Nonlinear analysis 
3.1. Formulation 

To compute the shape of highly non-spherical drops, we resort to numerical methods. 
Given the vorticity of the drop w = ha, we seek to calculate the shape of the drop, 
as well as the internal and external flow fields, subject to the kinematic condition 

u.jj = &.A = 0, (3.1) 

and to the dynamic condition expressed by (2.11). Here, ii is the unit vector normal 
to the boundary of the drop. To make our formulation compact, we introduce the 

= &, modified internal flow 
(3 .2a)  - 

with azimuthal vorticity 3 = ha, (3.2b) 

where fi = aih. ( 3 . 2 ~ )  

This modified flow must satisfy the kinematic boundary condition (3.1), and the 

dynamic condition 4k 
W ii*ii-u*u+- = c ,  (3.3) 

where k is the total curvature of the drop. Furthermore, it is convenient to 
decompose the modified internal flow as 

(3.4) g = p o t  + p o t  + u;, 
where Crot is a rotational flow field with vorticity (3.2b), and Pot is a potential flow 
field. We identify Grot with the flow induced by the vorticity distribution 9, and Pot 
with the flow induced by a vortex sheet of strength y residing along the drop surface. 
In this manner, we rewrite (3.4) in the form 

ii(x,) = U(xo-x, a,, u) 3 dX+ U ( ~ , - X ,  a,, v) y dE+ Ui, (3.5) I* J: 
where U is the fundamental flow induced by a vortex ring, and i" is the unit vector 
in the x-direction. The axial and radial components of U are given in Appendix A. 
Furthermore, we insist that (3.5) is valid in the exterior of the drop, as well as on the 
drop surface. In the second case, the second integral in (3.5) should be interpreted as 
a Cauchy principal value integral. The velocity expressed by (3.5) is discontinuous 
across the drop surface, and the limiting values of the velocity on either side of the 
surface are given by 

where f is the unit tangent vector, and the superscript zero indicates evaluation right 
on the drop surface. Using Stokes theorem, we may convert the area integral in (3.5) 
into a line integral over the drop contour (Pozrikidis 1986). This tranforms (3.5) into 

i i ( * ) ( X 0 )  = a ( O ) ( x , ) + ~ ( x , )  i, (3.6) 

a@,) = IC [U(x,-x, a,, a)  y+iP(z , -x ,  a,, f i  dZ+ Ui, (3.7) 

where 
U P, = --D, 

47c 
( 3 . 8 ~ )  

U 
P, = -G.  

Q.0 
(3.8b) 
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H e r e , j  is the unit vector in the a-direction, and SZ and G are the potential function 
and stream function associated with a vortex ring of unit strength. These may be 
expressed in terms of complete elliptic integrals of the first, second, and third kind 
as explained in Appendix A. In particular, SZ is equal to the solid angle subtended 
from the point (xo,ao) to the ring (%,a). Its  consistent computation requires the 
introduction of a branch cut a t  a > go. 

Substituting (3.6) into (3.1) and (3.3) we derive the boundary conditions 

p). f j  = 0, (3.9u) 

(3.9b) and 

Given that the volume of the drop is equal to %IT, and also, given i, and W or k,,, the 
problem is to solve (3.9a, b)  for the strength of the sheet y and for the drop shape. 

3.2. Numerical procedure 

In our numerical procedure we trace the boundary of the drop with 2N- 1 marker 
points, and approximate the shape of the drop with a collection of circular arcs 
passing through trios of successive points (figure 1 ) .  We assign to each point a value 
of the vorticity yi, and approximate the strength of the vortex sheet over each arc 
with a parabolic function with respect to arc length. In addition, we express the 
position of the marker points using a parametric representation. We have considered 
two such representations including r(8), and (%(a), a(8) = c($R) sin 8) with 8 evenly 
spaced within [0, R]. Requiring that the drop is symmetric with respect to z = 0, we 
end up with 2N- 1 scalar unknowns including yc, i = 2, ..., N ,  and T i ,  i = 1 ,  ..., N or 
..(in), and xi ,  i = 1, ..., N - 1 .  We have acknowledged that y1 = a1 = 0. 

To solve for the unknowns, we require a set of 2N-1 equations. One equation 
comes from the restriction that the volume of the drop is equal to +R. N -  1 additional 
equations arise by applying the dynamic condition (3.9b) at the points i = 2 ,  ..., N. 
Finally, N - 1  equations arise by applying the kinematic condition ( 3 . 9 ~ )  at the 
points i = 1, . . . , N -  1. In certain cases, we find it convenient, instead of specifying W ,  
to specify a geometrical characteristic of the drop such as the curvature at the 
stagnation points k,, or the drop aspect ratio x = a(8 = in)/x(O = 0).  In these cases, 
we treat W as an additional unknown, and supplement the above system with the 
imposed geometrical restriction. We solve the resulting system of equations by the 
method of Newton-Raphson. We evaluate all of the derivatives in the Jacobian 
matrix by numerical differentiation, except for the ones with respect to W.  
Furthermore, we exploit the fact that a change in the strength of the vortex sheet 
or in the position of a marker point produces changes only in the characteristics of 
the arcs that pass through this point to reduce the cost of the computation of the 
Jacobian. We compute the singular integrals of U and G in (3.7) by subtracting off, 
and then integrating analytically the singularities over each arc. The required 
regular numerical integrations are performed using the two-point Gauss-Legendre 
method. 

Our numerical scheme is second-order accurate with respect to N. This was verified 
for slightly eccentric drops by the use of Richardson extrapolation. Unfortunately, 
increased computational cost has prevented us from performing calculations with a 
large number of points for highly deformed drops. All computations were performed 
with N = 17, and convergence was tested by comparing the results with those with 
N = 13,9,5,  and with predictions of the asymptotic analysis. The results presented 

4 
W 

pc-). c(-) - $f) . a(+) + - ( k  - kst) = 0. 
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in the next section have an error of less than 1 Yo. The illustrated drop shapes are 
accurate within plotting accuracy. 

To accelerate convergence we used continuation in our initial guesses. Fur- 
thermore, to reduce the cost of the computations, we updated the Jacobian matrix 
only once or twice during each run. In  all cases, the calculations converged within 
five iterations. The major expense in our computations was the evaluation of the 
Jacobian matrix. For N = 17, each evaluation of the Jacobian required approxi- 
mately 1.5 min of CPU time on the SDSC CRAY X-MP/4. A complete run 
required 3 4  min of CPU time. 

3.3. Results 
The asymptotic analysis of $ 2  revealed the existence of slightly deformed steady- 
drop shapes a t  all but a number of critical values of the Weber number. This 
suggested the existence of distinct branches of solutions extending between two 
successive critical values. In our numerical computations we confine our attention to 
the lowest branch 0 < W < 4.41 for two reasons. First, high W yield oscillatory 
shapes that may not be resolved with sufficient accuracy in our numerical procedure. 
Second, experimental observations indicate that drop shapes a t  high W are unstable 
and hence, physically unrealizable (see discussion in the next section, but also note 
that in a quasi-steady approximation, the Weber number of a drop that accelerates 
from rest is continuously increasing, causing continuous deformation and destruction 
a t  the first critical point W = 4.41). 

In our discussion we shall use the parameter A’, defined as 
* 

A’ = -&A = -“A&$. 15 (3.10) 

Setting A’ = 1 (or A = A,) yields spherical drops, whereas setting A‘ = 0 yields 
bubbles with vanishing circulation. 

In figure 4 (u-c) we present a representative compilation of computed drop shapes 
for A’ = 0, 0.80, 0.950, sorted in order of increasing aspect ratio x. Before discussing 
these shapes, it is helpful to present an overall picture of our results by presenting 
a graph of the aspect ratio x of a drop with respect to the Weber number (figure 5). 
As mentioned in the introduction, the case A’ = 0, was studied by several previous 
authors inchding Moore (1963, 1965), El Sawi (1974), and Miksis, Vanden-Broeck & 
Keller (1981). Our results are in perfect agreement with the numerical calculations 
presented by the last authors. The corresponding curve in figure 5 shows a mild 
maximum W = 3.23 at x = 3.85. This separates two solution branches, the one to the 
right, for the most eccentric shapes, probably being unstable. For A’ = 0.40, we 
observe behaviour very similar to that for A’ = 0, with the maximum W being 
virtually unchanged. This suggests that moderate internal circulation has minor 
influence on the drop shape. We note, however, that the aspect ratio corresponding 
to the maximum Weber number is appreciably shifted to lower eccentricities. For 
A’ = 0.80, we observe a distinct change in behaviour ; the maximum W is well above 
the one for A’ = 0, whereas the eccentricity corresponding to this maximum is well 
below x = 3.85. The asymptotic behaviour as A’ tends to unity becomes evident by 
inspecting the curve for A’ = 0.950. This is characterized by a sharp increase at small 
eccentricities, a distinct maximum at x x 1.3, and a mild decrease a t  high 
eccentricities. At the end of the spectrum is the curve for A’ = 1. As suggested by the 
asymptotic analysis of $ 2 ,  this curve crosses the x = 1 axis at the critical point 
W = 4.41. 

We found that the shape of a drop with specified internal circulation may not be 
a unique function of the Weber number. As in the case of bubbles, we may speculate 
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FIQURE 4. Drop shapes for three values of the circulation parameter A’ = -&hi, and for several 
values of the aspect ratio x. (a )  A’ = 0, x = 1.016, 2, 4, 8, 20; ( b )  A’ = 0.80, x = 1.2, 2, 4, 8.2; (c) 
A’ = O.F)5, x = 1.037, 2, 4, 8. The corresponding Weber numbers may be deduced from figure 5. 

that drops corresponding to the solution branches with the most eccentric shapes are 
unstable. If this is true, then increasing the drop circulation decreases the maximum 
possible aspect ratio for steady motion. 

Let us now discuss the drop shapes shown in figure 4. Considering first the case of 
vanishing circulation (figure 4a), we observe that bubbles with low eccentricity 
resemble oblate spheroids, whereas bubbles with high eccentricity contain a dimple 
along the axis of motion. As x is increased, the thickness of a bubble at the centreline 
tends to  zero, and the bubble assumes the shape of a flattened ring (Miksis et al. 
1981). The effect of internal circulation becomes evident by comparing these shapes 
to those shown in figure 4 ( b ) ,  for A’ = 0.80. In the second case, low x drops resemble 
oblate spheroids, whereas high x drops resemble saucers with a rounded main body 
and an elongated tip. These shapes bear a noticeable resemblance to those 
photographed by Winnikow & Chao (1966, see their figure 3 ( e ,  g,  k)). The effect of 
drop circulation becomes more clear by inspecting figure 4 ( c ) ,  showing drop shapes 
with A’ = 0.95. For the most elongated shape shown in this picture, the segment 
connecting the main body to the tip of the drop is nearly vertical. Calculations 
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FIGURE 5. The Weber number as a function of the drop aspect ratio x for several values of the 
internal circulation parameter A'. The dotted lines represent asymptotic results for slightly non- 
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FIGURE 6. Streamline patterns for two drops with h' = 1.0, and (a) x = 2 ,  (6) x = 4. 

beyond this point failed to converge. This was attributed to inadequate resolution of 
the crossing points between the branch cut of the solid angle Q and the drop 
boundary. The results however, clearly indicated the formation of a dimple off the 
axis of motion, and suggested an asymptotic drop shape which is composed of a main 
central body and a secondary satellite ring. Overall, figure 4 suggests that increasing 
the internal drop circulation causes a corresponding increase in the thickness of the 
main body of a drop. 

The structure of the flow inside and outside deformed drops is illustrated in figure 
6(a,  b)  showing streamline patterns for two cases with A' = 1.0, and = 2,4. In both 
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FIGURE 7 .  The strength of the modified bounding vortex sheet for A' = 0.95, and several drop 
aspect ratios. 

cases we observe that the centre of the internal vortex is outside the main body of 
the drop, suggesting an efficient recirculation of material elements inside the drop. 

Finally, it is enlightening to consider the strength of the vortex sheet bounding the 
drop. This is plotted in figure 7 with respect to the radial position u for A' = 0.95, 
and for several values of 2. It is important to keep in mind that y does not represent 
the actual discontinuity in the velocity across the boundary of the drop, except for 
the special case a = 1. y is a sinusoidal function of 8 at small x. Around the axis of 
motion and the tip of the drop, as x is increased, y increases in a corresponding 
monotonic fashion. In the intervening region, as x is increased, y increases, reaches 
a maximum, and then it decreases. This behaviour is attributed to the saucer-like 
drop shape, and reflects the presence of the main body and of the elongated tip. 

4. Discussion 
Experimental observations have shown that as the Reynolds number of a drop is 

increased, the drag coefficient decreases, reaches a minimum, and then, it increases 
at  a fast rate. The Weber number corresponding to the minimum drag coefficient has 
an approximate value of 4, independent of the physical properties of the fluids 
(Harper 1972). More importantly, this characteristic Weber number separates two 
flow regimes with distinct behaviour. Drops at lower Weber numbers move steadily, 
whereas drops at higher Weber number execute oscillatory motions, break into 
smaller fragments, or develop skirts and dimples. One may remark that the above 
characteristic value of 4 is close to the first critical point W = 4.41. One is then 
tempted to speculate that unsteady drop motion may be linked to the non-existence 
of even slightly deformed drops at W = 4.41. There is of course the possibility that 
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drops become unstable owing to the development of unsteady wakes. A formal 
stability analysis is necessary to clarify the issue. 

Experimental work with drops is limited to observations of drop shapes, 
visualization of the associated wakes and internal flow, and measurements of drag 
coefficients. To the author’s knowledge, apart from the qua,litative observation that 
increasing the drop deformation decreases the drop circulation, there is no published 
quantitative information on the intensity of the internal circulation. A comparison 
of our computations with experimental work must await further developments. 

Recently, Dandy & Leal (1989) presented finite-difference calculations for 
deformable drops at  low and intermediate Reynolds numbers. Their calculations are 
in good agreement with the analysis of Harper & Moore (1968) for moderate drop 
deformations and for a close to 1. Unfortunately, these authors do not present 
calculations for highly deformed shapes at sufficiently high Reynolds numbers, 
prohibiting a critical comparison with our results. 

In summary, we have described a family of inviscid drops with internal motion, 
parametrized by the Weber number and the intensity of the internal circulation A. 
We found that solutions may exist at all but a number of discrete values of the Weber 
number. Our calculated drop shapes include saucer-like shapes, with a rounded body 
and an elongated tip that bear close resemblance to shapes photographed by 
previous authors. We also found that increasing the drop circulation increases the 
thickness of the main body of a drop. We hope that our results will serve as a point 
of reference for future numerical work on drops at  large Reynolds numbers. 

I wish to thank Dr Scott Jones for reviewing the algebra in $2. Thanks are due to 
the Office of Academic Computing of UCSD for providing computer resources with 
the San Diego Supercomputer Center. Acknowledgement is made to the donors of 
The Petroleum Research Fund, administered by the ACS, for partial support of this 
research. 

Appendix A 

vortex ring of unit strength located at  x, are given by 
The axial and radial components of the velocity induced at  the point x,, by a 

where 

, r: = ( x 0 - x ) 2 + ( a o - a ) 2 ,  r i  = ( ~ ~ - x ) ~ + ( a , + a ) ~ :  
1 1 1  1 1 1  - =-+-, - = _-- 

rM rl ‘2 rrn rl r2 

E and K are complete elliptic integrals of the first and second kind. The stream 
function associated with the vortex ring is given by (Lamb 1932) 

FLM 209 
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The solid angle subtended from the point xo to the ring x is given by 

and I7 is the complete elliptic integral of the third kind (Pozrikidis 1986). 
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